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How do costs develop?

What factors play a role?

Limitations to fuel cell cost reductions?

Fuel Cell Economics
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Fuel Cell application
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Future role: security-of-supply

Many sources and many applications



schoots@ecn.nl

A future role: cleaning up transport sector

Long ranges possible

Increase local air quality

But

Costs still high

Market & infrastructure development uncertain

http://upload.wikimedia.org/wikipedia/commons/9/9d/Yamaha_FC-me.jpg
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80 kW PEM fuel cell system costs

Catalyst

Gas Diffusion Layer

Membrane

Electrode

Flowplates

Stack Assembly

Hydrogen Management

Air Management

Temperature Management

BoP peripherals

System Assembly

1067 €(2005)/kW
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Progress ratio = 1- Learning rate

In practice pr = 81 ± 8%

Learning curve basics
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Each doubling of cumulated production: → costs reduce 

with the same factor
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Progress ratio 82%
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The rock bottom
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80 kW in 2007 future lower limit
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80 kW PEM fuel cell system costs: the lower limit

1067

95

Still large 

potential for

cost reduction

Catalyst limits

cost reductions
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Learning curve PEMFC for transportation

running on pure hydrogen only, raw data

Corrections required:

• Inflation

• Economies-of-scale

• Pt market price
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• Learning-by-doing vs. economies-of-scale

• Different mechanisms

l-b-d: cost reductions through gaining experience

e-o-s: cost reductions through scale benefits

• Different time dependency

l-b-d: time dependent

e-o-s: time independent

Sref = 500 units/yr

λ = 0.69

Economies-of-scale
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Learning curve PEMFC for transportation

running on pure hydrogen only

Corrections:

• Inflation 

→ 2005

• Economies-of-scale 

→ 500 units/yr
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Not all costs subject to learning

Example: CH4 pipeline components follow market prices
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Platinum price development
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Platinum does not follow price index fuel cell
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80 kW in 2007 future lower limit
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Platinum less subject to learning

10% Pt 83% Pt

1067

95
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progress ratio: 79 ± 4%

R
2
 = 0.73 

Learning curve PEMFC for transportation

running on pure hydrogen only, with all corrections

Corrections:

• Inflation 

→ 2005

• Economies-of-

scale → 500 

units/yr

• Pt market price 

→ 2005
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Corrections:

• Inflation 

→ 2005

• Economies-of-

scale → 500 

units/yr

• Pt market price 

→ 2005
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Learning curve PEMFC for transportation

running on pure hydrogen only, with all corrections
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Learning curve PEMFC for transportation

running on pure hydrogen only, with all corrections

Data scattering:

FC component

market prices?

Definition of costs?

What is accounted?

For how much?

Econ. of scale over 

full costs justified?

Small 

technical 

differences
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Missions are linked to the year of construction of the spacecraft. 

Apollo AFCs by Pratt & Whitney Aircraft

R&D, qualification, testing, Apollo AS201

Apollo AS202, 1 and 4

Apollo 6-9

Apollo 10-11

Apollo 12-15

Apollo 16-19

Apollo 20

Annual production

Per mission:

- 3 units in CSM

- 1 or 2 units spare



schoots@ecn.nl

Apollo AFCs by Pratt & Whitney Aircraft

Cumulative production
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Apollo AFCs by Pratt & Whitney Aircraft

Time dependence of alkaline fuel cell costs
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Learning curve

Jan 1967, 

Apollo 1 accident

Design overhaul
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Effect of investment in R&D

Cumulative production

Costs

deployment

Technology structural change

Technology 

variant A
Technology 

variant B

Increased R&D → cost reductions stepwise

or incremental
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Effect of investment in R&D

deployment

Increased R&D → cost reductions stepwise

or incremental

Cumulative production

Costs

Technology incremental change

Technology 

variant A

Although R&D has a positive effect on cost reductions, 

isolating and quantifying the effect is very problematic!
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Learning curve

pr = 82 ± 9%

R2 = 0.84
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PAFC by UTC Power

Learning curve 1993-2000

Forecasts

1999 & 2000

pr = 75 ± 3%

R2 = 0.75

Source: R. Whitaker, Journal of Power Sources 71, (1998) 71.
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PEMFC by Ballard

Source: http://www.ballard.com/be_informed/fuel_cell_technology/roadmap Last checked May 1, 2007

pr = 70 ± 9%

R2 = 0.83

Learning curve 2002-2005
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Technology Learning for Fuel Cells

Manufacturer period FC Type PR R2

Global 1995-2006 PEMFC 79 ± 4% 0.73

P & W 1964-1970 AFC 82 ± 9% 0.84

UTC Power 1993-2000 PAFC 75 ± 3% 0.75

Ballard 2002-2005 PEMFC 70 ± 9% 0.83
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Conclusions Fuel Cell Economics

• How do hydrogen fuel cell costs develop?

- Costs of  PEMFC reduce by a global progress ratio of 79 ± 4%

- Current costs at 1 k€(2005)/kW for 80 kW PEMFC

• What other factors play a role?

- Economies-of-scale

- R&D dominates current fuel cell developments and will remain 

important. Short-medium term: learning-by-searching complements 

learning-by-doing

- Long term: Market price of components and labor may dominate 

fuel cell cost development

• Limitations to PEM fuel cell cost reductions?

- Learning potential exhausted at 95 €(2005)/kW (assuming current 

state-of-the-art)


